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Abstract. In this paper, a new penalty function approach is proposed for the linear bilevel multiobjective
programming problem. Using the optimality conditions of the lower level problem, we transform the linear
bilevel multiobjective programming problem into the corresponding linear multiobjective programming
problem with complementary constraint. The complementary constraint is appended to the upper level
objectives with a penalty. Then, we give via an exact penalty method an existence theorem of Pareto optimal
solutions and propose an algorithm for the linear bilevel multiobjective programming problem. Numerical
results showing viability of the penalty function approach are presented.

1. Introduction

Bilevel programming(BP), which is characterized by the existence of two optimization problems in which
the constraint region of the first-level problem is implicitly determined by another optimization problem, has
increasingly been addressed in literature, both from the theoretical and computational points of view(see
the monographs of Dempe[1] and Bard[2] and the bibliography reviews by Vicente[3], Dempe[4] and
Colson[5]). In the last two decades, many papers have been published about bilevel optimization, however
there are only very few of them dealing with bilevel multiobjective programming(BMP) problem, where
the upper level or the lower level or both of a bilevel decision have multiple conflicting objectives[6–8].

Shi and Xia[9, 10] propose an interactive algorithm based on the concepts of satisfactoriness and di-
rection vector for nonlinear bilevel multiobjective problem. Abo-Sinna[11], Osman et al.[12] present some
approaches via fuzzy set theory for solving bilevel and multiple level multiobjective problem, and Teng[13],
Deb and Sinha[14] give evolutionary algorithms for some bilevel multiobjective programming problems.
Besides, Bonnel and Morgan[15], Zheng and Wan[16] consider a so-called semivector bilevel optimization
problem and propose solution methods based on penalty approach. A recent study by Eichfelder[8] sug-
gests a refinement based strategy in which the algorithm starts with a uniformly distributed set of points
on upper level variable. Noted that if the dimension of upper level variable is high, generating a uni-
formly spread upper level variables and refining the resulting upper level variable will be computationally
expensive.

The linear bilevel multiobjective programming(LBMP) problem, i.e., both the objective functions and the
constraint functions are linear functions, has attracted more and more attention. Nishizaki and Sakawa[17]
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give three Stackelberg solution definitions and propose the corresponding algorithms based on the idea
of the K-th best method; Ankhili and Mansouri[18] propose an exact penalty function algorithm based
on the marginal function of lower level problem for the LBMP problem, where the upper level is a linear
scalar optimization problem and the lower level is a linear multiobjective optimization problem; Calvete
and Gale[19] analyze the characters of the feasible region and give some algorithms frame for the LBMP
problem, where the upper level is linear multiobjective optimization problem and the lower level is linear
scalar optimization problem.

In this paper, different from the solving approaches mentioned above, we propose a new exact penalty
algorithm for the linear bilevel multiobjective programs, where both the upper level and the lower level
are linear multiobjective optimization problem. Our strategy can be outlined as follows. By using the
weighted sum scalarization approach and the KKT conditions, we reformulate the LBMP problem as a
linear multiobjective optimization problem with complementary constraint. Thereafter, we append the
complementary constraint to the upper level objectives with a penalty, and construct a penalized problem
for the LBMP problem. Then we give via an exact penalty method an existence theorem of Pareto optimal
solutions and propose an algorithm for the LBMP problem. Finally, we give some numerical examples to
illustrate the algorithm proposed in this paper.

The remainder of the paper is organized as follows. In the next section we give the mathematical model
of the LBMP problem and construct the penalized problem. In Section 3, we analyze the characters of the
penalized problem and give via an exact penalty method an existence theorem of Pareto optimal solutions.
In Section 4, we propose the algorithm and give the numerical results. Finally, we conclude the paper with
some remarks.

2. Linear Bilevel Multiobjective Programming and Penalized Problem

The linear bilevel multiobjective programming problem, which is considered in this paper, can be written
as:

max
x≥0

Cx + C′y

s.t. max
y≥0

Dy (1)

s.t. A1x + A2y ≤ b,

where x ∈ Rn, y ∈ Rm, b ∈ Rp,A1 ∈ Rp×n,A2 ∈ Rp×m,C ∈ Rq×n,C′ ∈ Rq×m,D ∈ Rl×m.
Let S = {(x, y)|A1x + A2y ≤ b, x ≥ 0, y ≥ 0} denote the constraint region of problem (1), S̄ = {y ∈

Rm
+ |A1x+A2y ≤ b}denote the feasible set of the lower level problem, and Πx = {x ∈ Rn

+|∃y ∈ Rm
+ ,A1x+A2y ≤ b}

be the projection of S onto the decision space of the upper level problem.
To well define problem (1), we make the following assumption:
(H1) The constraint region S is nonempty and compact.
(H2) For any (x, y) ∈ S, the vectors A2i, i ∈ I = {i|A1ix + A2iy = bi, i = 1, 2, . . . , p, p ≤ m} are linear

independence.
Remark 2.1. It is noted that the assumption (H2) plays a key role in the method of replacing the lower level problem

with its KKT optimality conditions[20]. Based on assumption (H2), we can adopt the method of replacing the lower
level problem with its KKT optimality conditions, and transform the bilevel programming into the corresponding
single level programming.

For fixed x ∈ Rn
+, let S(x) denote the weak efficiency set of solutions to the lower level problem:

(Px) : max
y≥0

Dy

s.t. A2y ≤ b − A1x.

Definition 2.1 A point (x, y) is feasible for problem (1) if (x, y) ∈ S and y ∈ S(x); the term (x∗, y∗) is a
Pareto optimal solution to problem (1), provided that it is a feasible point and there exists no other feasible
point (x, y) such that Cx∗ + C′y∗ 5 Cx + C′y and Cx∗ + C′y∗ , Cx + C′y.
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Noted that for fixed x ∈ Πx, the lower level problem (Px) is the linear multiobjective programs. Then,
for fixed x ∈ Πx we can get some Pareto optimal solution to the lower level problem (Px) by solving the
following scalarization problem

max
y≥0

λTDy

s.t. A2y ≤ b − A1x,

where λ is some constant vector, i.e, the weight of the lower level objectives, which reflects the preference

of the decision maker to the lower level objectives and belongs to the set Ω = {λ|λ ∈ Rl
+,

l∑
i=1
λi = 1}.

Then, some Pareto optimal solutions of problem (1), which corresponds to some fixed λ, the weight of
the lower level objectives, can be obtained by solving the following bilevel multiobjective programs, where
the lower level problem is a scalar optimization problem

max
x≥0

Cx + C′y

s.t. max
y≥0

λTDy (2)

s.t. A1x + A2y ≤ b.

Following assumption (H2), we replace the lower level problem with its KKT optimality conditions and get
the following programs

max Cx + C′y
s.t. A1x + A2y + w = b, (3)

AT
2 u − v = DTλ,

uTw + vT y = 0,
x, y,u, v,w ≥ 0,

where u ∈ Rp, v ∈ Rm are the lagrangian multiplies, and w ∈ Rp is slack variable.
For each x ∈ Πx, let y ∈ γ(x) = arg max

y
{λTDy|A1x + A2y ≤ b, y ≥ 0}. We have the following proposition.

Proposition 2.1 Let (x̄, ȳ) be a Pareto optimal solution of problem (2), and (ū, v̄), w̄ are corresponding
multiplier and slack variable associated with (x̄, ȳ) respectively. Then (x̄, ȳ, ū, v̄, w̄) is a Pareto optimal
solution of problem (3). Conversely, suppose that (x̄, ȳ, ū, v̄, w̄) is a Pareto optimal solution to problem (3).
Then (x̄, ȳ) is a Pareto optimal solution of problem (2).

Proof. If (x̄, ȳ) be a Pareto optimal solution of problem (2), it means that ȳ ∈ γ(x̄). Then, there exists
corresponding multiplier (ū, v̄) and slack variable w̄ such that the KKT optimality conditions of the lower
level problem in problem (2) are satisfied in (x̄, ȳ, ū, v̄, w̄), that’s, (x̄, ȳ, ū, v̄, w̄) is feasible to problem (3). Now,
suppose that (x̄, ȳ, ū, v̄, w̄) is not a Pareto optimal solution to problem (3), then there exists some feasible
point (x̃, ỹ, ũ, ṽ, w̃), such that

Cx̄ + C′ ȳ 5 Cx̃ + Cỹ and Cx̄ + C′ ȳ , Cx̃ + Cỹ

It contradicts with (x̄, ȳ) is a Pareto optimal solution to problem (2).
Now, we prove the second part of Proposition 2.1.
If (x̄, ȳ, ū, v̄, w̄) is a Pareto optimal solution to problem (3), then there doesn’t exist other feasible point

(x̃, ỹ, ũ, ṽ, w̃), such that

Cx̄ + C′ ȳ 5 Cx̃ + Cỹ and Cx̄ + C′ ȳ , Cx̃ + Cỹ

As (x̄, ȳ) and (x̃, ỹ) are both feasible to problem (2), following the above formula, (x̄, ȳ) is a Pareto optimal
solution to problem (2). The proof is completed. �
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For problem (3), we append the complementary constraint to the upper level objectives with a penalty,
then the following penalized problem is obtained

max F(x, y,u, v,w,K) = Cx + C′y − K(uTw + vT y)e
s.t. A1x + A2y + w = b, (4)

AT
2 u − v = DTλ,

x, y,u, v,w ≥ 0,

where e ∈ Rq has all its components equal to unity, and K is a large positive constant. Clearly, problem (4)
will reach optimality when uTw + vT y→ 0.

3. Theoretical Results

We will now analyze the main theoretical result, i.e., the exactness of the penalty function approach,
which means we can get the Pareto optimal solutions of problem (2) by solving the penalized problem (4)
for some finite positive constant K.

Before presenting some theoretical results, we introduce some useful notations firstly. Let Z = {(x, y,w)|A1x+
A2y + w = b, x ≥ 0, y ≥ 0,w ≥ 0}, W = {(u, v)|AT

2 u − v = DTλ,u ≥ 0, v ≥ 0}, and we denote the extreme points
of W and Z by Wv and Zv, respectively.

Theorem 3.1 For a given value of (u, v) ∈ W and fixed K, a Pareto optimal solution to the following
programs

max
(x,y,w)

F(x, y,u, v,w,K) (5)

s.t. (x, y,w) ∈ Z

is achievable at some (x∗, y∗,w∗) ∈ Zv.
Proof. Noted that for a fixed value of (u, v) ∈W and K, problem (5) is the linear multiobjective programs,

then Theorem 3.1 is obvious. �
Theorem 3.1 yields the following theorem.
Theorem 3.2 For fixed K, a Pareto optimal solution to problem (4) is achievable in Zv × Wv and

Zv ×Wv = (Z ×W)v.
Proof. Let (x∗, y∗,w∗) ∈ Zv be a Pareto optimal solution to problem (4). As F(x∗, y∗,u, v,w∗,K) is affine

functions of (u, v), and W is a polytope, then the following problem

max
(u,v)

F(x∗, y∗,u, v,w∗,K)

s.t. (u, v) ∈W

will have Pareto optimal solutions (u∗, v∗) ∈ Wv. This proves the first part and the second part is obvious
following Theorem 2 in [22]. �

The above theorem is based on a fixed value of K. We now show that a finite value of K would yield an
exact Pareto optimal solution to the overall problem (4), where the penalty term uTw + vT y becomes zero.

Theorem 3.3 There exists a finite value of K, K∗ say, for which the Pareto optimal solution (x, y,u, v,w)
to the penalty function problem (4) satisfies uTw + vT y = 0.

Proof. Suppose that (x∗, y∗,w∗) is the Pareto optimal solution to problem (2), the linear bilevel mul-
tiobjective problem, then the optimality conditions of lower level problem are satisfied. That means
(u∗)Tw∗ + (v∗)T y∗ = 0.

Let (x, y,w) be a Pareto optimal solution to problem (4), then there exists an index i, such that

Cix + C′i y − K(uTw + vT y) ≥ Cix∗ + C′i y
∗
− K((u∗)Tw∗ + (v∗)T y∗) = Cix∗ + C′i y

∗,

where Ci and C′i are the i-th rows of C and C′, respectively.



Y.B.Lv / Filomat 29:4 (2015), 773–779 777

Thus,

0 ≤ uTw + vT y ≤
max[Cix + C′i y − Cix∗ − C′i y

∗]

K
≤

k
K
,

where k is some constant. Thus, as K→∞, uTw + vT y→ 0. However, Since Zv ×Wv is finite, uTw + vT y = 0
for some large finite value of K, say K∗. �

We now show that, by increasing K monotonically, we can achieve some Pareto optimal solutions of the
linear bilevel multiobjective programming problem (1).

Theorem 3.4 The penalty function approach yields some Pareto optimal solutions to problem (1).
Proof. For problem (1), optimality is reached when one can get the optimal value of the vector Cx + C′y

and also satisfy the optimality conditions of the lower level problem which is achieved when uTw+vT y = 0.
The later is achieved following the essence of penalty function methods for multiobjective programs[23]
and at a finite K(by Theorem 3.3). �

4. Algorithm and Numerical Results

Now, based on the above theorems we can propose an exact penalty function algorithm for solving
linear bilevel multiobjective programming problem (1).

Algorithm
Step 0. Choose an initial point (x0, y0,u0, v0,w0) ∈ Wv × Zv, the weight of the lower level objectives, a

positive constant K > 1 and stopping tolerance ε > 0, and set k := 1.
Step 1. Find a solution (xk, yk,uk, vk,wk) of problem (4).
Step 2. If (uk)Twk + (vk)T yk

≤ ε, stop; else goto Step 3.
Step 3. Set (xk+1, yk+1,uk+1, vk+1,wk+1) := (xk, yk,uk, vk,wk), k := k + 1, K := 5K, and go to Step 1.
In Step 1, to facilitate the resolution of problem (4), we adopt the so-called “ideal points”approach[21]

to get some Pareto optimal solution. The reason why we don’t adopt other approaches to get the Pareto
optimal front of problem (4) is that our primary aim in this paper is to explore the exact penalty method
of transforming the linear bilevel multiobjective programs to some smooth multiobjective programs. Of
course, the Pareto optimal front of the smooth multiobjective programs can be obtained using some appro-
priate approach.

In Step 2, the stopping criterion is standard, and is usually a part of any practical stopping criterion in
commercial codes for the solution of smooth optimization problems. Based on the stopping criterion, we
can find an approximate stationary point of problem (4).

The following theorem states the convergence of the above algorithm.
Theorem 4.1 Let assumption (H1) and (H2) be satisfied, then the last point in the sequence {(xk, yk)},

which is generated by the above algorithm, is a Pareto optimal solution to problem (1).
Proof. Following Theorem 3.3, we know that the penalty function is exact. Then, It means that the

sequence {(xk, yk)}, which is generated by the above algorithm, is finite. Let (x∗, y∗) be the last point in the
sequence {(xk, yk)}. Following Theorem 3.4, It obvious that (x∗, y∗) is a Pareto optimal solution to problem
(1). �

To illustrate the above algorithm proposed, we consider the following linear bilevel multiobjective
programming problems.

Example 1[6]

min
x≥0

F(x, y) = (−x + 2y, 2x − 4y)

s.t. − x + 3y ≤ 4
min
y≥0

f (x, y) = (−x + 2y, 2x − y)

s.t. x − y ≤ 0
−x − y ≤ 0
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Table 1: Pareto optimal solution corresponding to different K
Examples The fixed weight of the lower level objectives

in this λ = (λ1, λ2) = (0.5, 0.5)
paper K = 1000 K = 5000 K = 25000

Exam.1 (0, 0) (0, 0) (0, 0)
Exam.2 (144.2, 26.8, 2.97, 67.7, 0) (144.2, 26.8, 2.97, 67.7, 0) (144.2, 26.8, 2.97, 67.7, 0)
Exam.3 (0.6, 2.4, 0, 0) (0.6, 2.4, 0, 0) (0.6, 2.4, 0, 0)

Table 2: Results in this paper comparing with that in the references
Examples A Pareto optimal solution and The Pareto optimal solution and

in this the upper level objective value the upper level objective value
paper obtained in this paper given in the references

Exam.1 (x∗, y∗) = (0, 0) (x∗, y∗) = (0, 0.5)
F(x∗, y∗) = (0, 0) F(x∗, y∗) = (1,−2)

Exam.2 (x∗, y∗) = (144.2, 26.8, 2.97, 67.7, 0) (x∗, y∗) = (146.30, 28.94, 0, 67.93, 0)
F(x∗, y∗) = (482.7, 1831.4) F(x∗, y∗) = (474.7, 1850.1)

Exam.3 (x∗, y∗) = (0.6, 2.4, 0, 0) (x∗, y∗) = (1.5, 1.5, 4.1, 3.4)
F(x∗, y∗) = (5.4, 4.2) F(x∗, y∗) = (4.5, 6.0)

Example 2[6]

max
x≥0

F(x, y) = (x1 + 9x2 + 10y1 + y2 + 3y3, 9x1 + 2x2 + 2y1 + 7y2 + 4y3)

s.t. 3x1 + 9x2 + 9y1 + 5y2 + 3y3 ≤ 1039
−4x1 − x2 + 3y1 − 3y2 + 2y3 ≤ 94
max

y≥0
f (x, y) = (4x1 + 6x2 + 7y1 + 4y2 + 8y3, 6x1 + 4x2 + 8y1 + 7y2 + 4y3)

s.t. 3x1 − 9x2 − 9y1 − 4y2 ≤ 61
5x1 + 9x2 + 10y1 − y2 − 2y3 ≤ 924
3x1 − 3x2 + y2 + 5y3 ≤ 420

Example 3[24]

max
x≥0

F(x, y) = (x1 + 2x2, 3x1 + x2)

s.t. x1 + x2 ≤ 3
max

y≥0
f (x, y) = (y1 + 3y2, 2y1 + y2)

s.t. − x1 + y1 + y2 ≤ 6
−x2 + y1 ≤ 3
x1 + x2 + y2 ≤ 8

In the above examples, we choose the fixed weight of the lower level objectives asλ = (λ1, λ2) = (0.5, 0.5),
and obtain the Pareto optimal solutions, which are presented in Table 1.

In table 2, we compare the upper level objective value obtained in this paper with that in the correspond-
ing references. Following the vector partial order, it is obvious that the Pareto optimal solutions obtained
in this paper does be the Pareto optimal solutions to the above three examples. Then, the exact penalty
function approach proposed in this paper to the linear bilevel multiobjective programming problem is
usefulness and viability.



Y.B.Lv / Filomat 29:4 (2015), 773–779 779

5. Conclusion

In this paper, we introduce a new exact penalty function method for solving linear bilevel multiobjective
programs. The method is based on replacing the lower level problem with its optimality conditions and
appending the complementary constraint to the upper level objectives with a penalty. The numerical results
reported illustrated that the exact penalty function method introduced in this paper can be numerically
efficient.

It is noted that, besides its theoretical properties, the new algorithm proposed in this paper has one dis-
tinct advantage: it only requires the use of practicable algorithms for the solution of smooth multiobjective
optimization problems, no other complex operations are necessary.
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